
mean diameters of the inner recuperator tube; d 3, the inside diameter of the outer recuper- 
ator tube; L, the length of the heat-exchange section; F, the area of the heat-exchange sur- 
face; T, the temperature of the heat carrier; ATav, the average temperature head; Q, the 
heat output; n, the number of heat-exchange sections; Re = wd/v, the Reynolds number; Pr = 
9/a, the Prandtl number; G, the heat-carrier flow rate; AP, the pressure drop. Subscripts: 
H, the magnetic field; 0, the absence of a magnetic field; i, the first heat carrier; 2, 
the second heat carrier; a prime indicates the inlet to the recuperator; double prime indi- 
cates the outlet from the recuperator; ++, direct motion of the heat carrier; +#, counter- 

flow of the coolant. 
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CLASSIFICATION OF THERMAL MODELS OF FLOWTHROUGH SYSTEMS 

OF THERMOSTATICALLY CONTROLLED OBJECTSAT VARIOUS 

TEMPERATURE LEVELS 

V. A. Romanenko, S. V. Tikhonov, S. I. Khankov, 
and N. K. Yagupova 

UDC 621.536.2 

We describe an approach to the selection of simplified methods of designing 
flowthrough systems of thermostatically controlled objects at various tem- 
perature levels; this approach is based on the classification of thermal 
models of the system, in terms of the nature of the thermal links. 

Frequent use is made in devices and industrial installations containing thermostatically 
controlled units of flowthrough thermostatic-control systems (STC) in which the coolant for 
heat carrier flows through heat exchangers in thermostatically controlled objects (OTC). 
Where necessary to maintain various temperature levels in OTC in close proximity to each 
other it is advisable to use sequential separation of the conduit with the coolant to ensure 
minimum coolant consumption. 

In determining the requirements to be imposed on the parameters of such STC, we must 
take into consideration the mutual thermal effect of the OTC, thus limiting the applica- 
bility of the calculation method developed for thermostats designed to stabilize the temper- 
ature of a single object [i, 2]. 

It is the purpose of this paper to undertake the classification of the thermal models 
of systems to reflect the structural features of the indicated STC, and this classification 
is based on determination of the criteria of maximum and minimum coolant flow rate, as well 
as of the strong and weak thermal links between the elements, thus allowing us to make recom- 
mendations with regard to the simplification of the calculation methods. The research was 
carried out for the case of thermostatic control of three sequentially cooled objects; how- 
ever, it is not difficult to extend both the results and conclusions to STC with an arbitrary 
number of OTC. 

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 56, No. 4, pp. 617-625, April, 
1989. Original article submitted August 31, 1987. 
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Fig. i. Thermal STC models: i) OTC; 2) conduit; 3) coolant 
flow; 4) thermal links. 

The advantages of this approach can be realized most effectively in analyzing the steady- 
state thermal regime of isothermal OTC, whose unique feature is the analytical solution of 
the problem in a linear formulation that is primarily oriented to an STC type cryostatic 
control system (SCC), and it is also very effective in determining the general requirements 
imposed on the SCC parameters during the earlier design stage. 

i. Thermal STC Models. In its most general form, the thermal model of an STC at three 
temperature levels can be illustrated by the diagram shown in Fig. la. The OTC is cooled 
by means of a coolant with an inlet temperature To, it is heated by heat flowing in from 
the ambient medium with a temperature T a by means of conductivity Oai , and in the general 
case by means of internal sources of heat generation; the second temperature level, pertaining 
to the motion of the OTC coolant, is associated with the first and the third by the thermal 
conductivities o12 and 023. All of the OTC can mutually affect each other through the mech- 
anism of heat overflow through the conduit. There is no link between the first and the 
third OTC: oi~ = O. 

In the general formulation, the problem of the thermal analysis of the STC can be solved 
by numerical integration of a system of nonlinear differential equations which describe the 
temperature fields in the conduit, in the coolant, in the heat ridges, and in the heat OTC. 
This is an effective means suitable for forecasting the characteristics of completed designs. 

For purposes of selecting a general plan and the STC parameters at an earlier stage 
in the design, the preferred approach is based on an analytical solution which requires the 
representation of the STC by means of a rather simple thermal model. 

We will limit the range of STC to be considered to three particular circuits, which 
are nevertheless both typical and characteristic, and in each of these the thermal links 
between the elements are represented by concentrated parameters. The first circuit (model 
i, Fig. la) corresponds to the case of an ideal thermal link between the OTC and the heat 
exchanger, i.e., o i § ~ (the temperature of the conduit at the segments in contact with the 
OTC coincides with the temperature of the OTC and is constant); the excess flow of heat 
through the conduit is negligibly small. Consideration is given to the radiative exchange 
of heat between the unloaded segment and the ambient medium. This circuit corresponds to 
a the#mal model with concentrated parameters. 

The second circuit (model 2, Fig. ib) corresponds to the case of terminal thermal links 
o i and the absence of thermal links between the elements (o12 = 023 = 0). The thermal bridges 
from the OTC are in contact with the conduit over the entire side surface of the conduit 
at the end section a i. The temperature field in the conduit is assumed to be uniform along 
its axis [3, 4], consideration being given to the possible radiative exchange of heat with 
the ambient medium. This circuit is described by a thermal model which contains distrib- 
uted parameters. 
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The third circuit (model 3, Fig. ic) is a special case of circuit 2 for the case in 
which a i + 0, which corresponds to some widely used means of heat removal (for example, 
thermal support-bearing interceptors [5, 6], cryostatic control of point links involving 
the use of bunched copper conductors, etc.). 

2. The Model with Concentrated Parameters. The thermal OTC regime in model 1 is de- 
scribed by a system of three algebraic heat-balance equations: 

aa~ (Tk --- TO + ~ (T~ - -  T 0 = Q~ - -  Po~, aa* (Ta - -  Y ~ ) .  a ~  (T~ - -  TO + 

+ a~3 (T3 -- T~) = Q~ -- Po~, ~3 (Ta-- Ta) -- ~23 (T3 -- T2) = Q~ -- Po3. 

The quantity of heat Qi removed by the coolant is defined as the enthalpy difference: 

Q~= cM(Toat,--To~),  i =  1, 2, 3. 

In the case of an isothermal heat exchanger, the coolant temperature Tou t i at the outlet 
is expressed in terms of T0i by means of the following relationships [7]: 

(1) 

(2) 

~z~S~ 
Tout~=Toi+(T~--To~)E~,  Ei= l - - exp ( - - , : p0 ,  q h - - - - - - -  

eM 

P~i , To~=Tout~+AT~i, AT~= ~-~ Tol=To, ] = i - - l ,  
(3) 

while the influx of heat Pji to the nonworking segment of the conduit between the OTC is 
regarded either as given or it is assumed to be the flow of heat from the body to the tube. 

When we take (2) and (3) into consideration, the terms in the right-hand side of system 
(i) have the form 

Q i - - P o i = c M E i ( T ~ - - T o O - - P i ,  T o 2 = T o + ( T ~ - - T o )  E~, 

To3 = To (1 --  E0 (1 - -  E~) + T~Et (1 - -  E~ + T,E~, (4) 

and it turns out that the temperature of coolant at the inlet to the i-th element may be 
regarded as equal to the temperatures at the outlet from the (i - l)-thelement, i.e., T01 
T02 = Tout I, T0a = Tout 2, if we combine the heat flowing into the nonworking segments of 
the conduits with the internal generation of heat in the OTC into total heat flows Pi = 

P0i + PjiEi �9 

Having solved system (i), with consideration of (4), we find the expression for the 
temperature of the middle element: 

T2=T~(T a, To)+T~(P0, T~= Ta+DTo , 
I + D  

D = cM [N 1 - -  aal*~E 1 (1 - -  E~) E3 - -  %IA,EIE~] 

N~ + c~A3cME1E ~ + %t~3cMEI (1 -- E~) Ea 

T2 (Pi) = Px [o~A3 + cME~E~A3 + c~3cME~E3 (1 - -  E2)] + P~AxA3 + P3e23A1 ; 
N~ + NlCM 

N1 = A1AaE1 + (~I~AaEI + ~23A1Ea - ~a~sE1Ea) (1 --E2), 

N~ = aatCl~A a + a~A1A a + ~8~3A1, A~ : %~ + ct~ + cMEi, i = 1, 8. 

= To ,  

(5) 

The quantities T I and T 3 are expressed in terms of To, T0i, and T 2 according to the formula 

I Tf = ~ (Oafa + ~i2T~ + cMEiToi + Pi), i = 1, 3. (6)  

Let us examine a typical and most interesting case, from the standpoint of actual prac- 
tice, that is based on two limitations: i. E i = i. In actual STC, when using effective 
heat exchangers, we find the realization of the conditions ~i > 2-4, under which E i > 0.9. 
Analysis of the solutions for (5) and (6) demonstrated that in the region E i = 0.8-1 the 
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Fig. 2. Relative temperature of the second OTC as a function 
of n I and m: a) solid lines, for n a = i0-~; dashed lines, for 
n 3 = 104; I) m = 0.i; 2) i; 3) i0; 4) i00; 5) i000; 6) i0,000. 
b) Solid lines for Km = i0 -4, dashed lines for Km = 104; i) 
K I = 10-4; 2) K I = 104 , the curves correspond to the case in 

which n I = n 3 = i; the dashed curves represent K l = Km = i: 
nz =i0 -~ forn~=10-4(3) and n3 =I0 ~ (4); nz=10~for ns=104(5]. 

values for the temperatures T i change only slightly, which validates the introduction of 
E i = I. 2. T2(P i) ~ T2(T a, To). This assumption is valid for systems of cryostatic control 
of passive objects to whose analysis this research is primarily directed. Examination of 

(5) demonstrates that for the case of uniform parameters PI = P2 = P3 = P, ~ = ~ = ~ = 
o0, oz2 = ~23 = o, the most rigorous limitation on the quantity P, satisfying the criterion 

of smallness, is imposed for the case of a small relative flow rate (cM ~ o 0, cM << o) and 
is formulated in the form of the condition o0T a ~ P. In the case of strong thermal links 
between the elements (o >> o 0, o ~ cM) the criterion of smallness in P is formulated as 

I/3cMT 0 + o0T a >> P, while with a large relative flow rate (cM ~ o 0, cM m o) it is formu- 

lated by the relationship ~0Ta + oT 0 m P. 

Introduction of these limitations enables us to eliminate the cumbersome aspects of 

the solutions for (5) and (6), and to write the expressions for the relative OTC tempera- 

tures in simple form in terms of the dimensionless parameters: 

n~K~ K~ +_____ram nt 
N1 T j - - T o  

1 +  ..o -}- , O j - T a _ _ T  o ,  ] =  1, 2, 3, (7) 
~2 = n3K3 Kt + m (nl + m) 

+ - g j  + N---?-- 

nl K1 ns K3 + m @~, Ni = ni + K~ -t- m, 

ni=aajOa2, K~=aj(%~, i =  !, 3, m=cM/ea2. 

Relationships (7) are extremely convenient for purposes of analyzing the influence exerted 
by the thermal links and by their uniformity on the thermal regime of the OTC. We are inter- 
ested in examining initially the limit cases of strong and weak links between the OTC, i.e., 
the situation in which K i = 0 of K i = ~; in this case, we obtain quite simple formulas for 

0 i and these are shown in Table 1. The case K I = K 3 = ~ leads to a trivial model for the 
combining of three OTC into a single uniform element, and the only practical conclusion which 
follows from the analysis of these relationships boils down to the fact that effective cool- 

3 

ing (@l = 02 = 03 + 0) is achieved when the conditions cM<<~oi are met. The cases K l = 0, 
i=I 

K 3 = ~ and K~ = ~, K 3 = 0 result in a slightly more complex model for two elements. 

Of greatest interest is the limit case K~ = K 3 = 0, in which we achieve the simplest 
regulation of the temperature levels for each of the three OTC as a consequence of using 
only three parameters: m, n I, and n 3. In this case, in the case of effective cooling of 
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Fig. 3. The functions 01(KI), solid lines: 
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TABLE i. Expressions for 0 i for Limit Values of K i 

Kx Oi Ks = O K s = o *  

01 

02 

03 

ei  

o, 

03 

nl  

n l  - F m  

nlrn 
1 + - -  

I"1,1"3 I- m 

1 +rn 

n 2 m 
- ~ - - ~  o~ (K1, K3 = o) 

t+n i  
l + n l + m  

01 (K~ = oo, K3 = 0) 

02 (K1 = n 2  rn ,  T4-; + K3=0) 

nl 

n l -~-  m 

h i m  
l + n z . q - - -  

n 1 -~- rlz 

l+n3+m 

O=(KI=O, Ks==) 

l + n l q - n s  

1 -q- n 1 + n~q-m 

01 (El ,  Ks = oo) 

02 (Iq,  K3 = oo) 

the first OTC (01 ~ i) when m ~ n I we find extensive possibilities of controlling the tempera- 
ture level of the second element: from 02 = 1 when n I ~ m ~ 1 to 02 = @I when 1 << n I << m. 
Selection of the values of 02 imposes a limitation on the range of variations in 03 from 

83 = 1 for n 3 m m to 02 when m >> n 3. 

As regards the system of elements under consideration, we find interest in determining 
the criteria of the maximum and minimum values of the parameters, i.e., such of these quanti- 
ties on the basis of which the limit transition may be regarded as attained and whose theo- 
retical relationships can be simplified to the form shown in Table i. Determination of these 
cris essentially involves solution of the problem of classifying the OTC thermal models, 
which is the fundamental goal of this research. We will begin with an analysis of the influ- 
ence exerted by the STC parameters on the thermal regime of the second OTC which, occupying 
an intermediate position, is found under more complex heat-exchange conditions. 

Figure 2a shows the functions 02(n I) when K I = K 3 = 1 and the various values of m, with 
the quantities ns given for the extreme cases, virtually corresponding to 0 and ~. We can 
see from the figure that 02 is defined by the values of m and n I, while the influence of 
n 3 may be regarded as secondary. The effect of the parameters K I and K 3 is insignificant, 
as we can see from Fig. 2b, which shows the curves of G2(m) for the limit values of K I and 
K3, virtually corresponding to 0 and ~. For purposes of comparison, this same graph also 
shows the curves for the low and high values of n I. 

Analysis of relationships (7), partially illustrated by the curves of Fig. 2, shows 
that the quantities KI, K 3, and n 3 may a~fect the temperature level of the second OTC under 
the condition n I + m < i0; in the opposite case, the thermal regime of the intermediate ele- 
ment is determined primarily by the relationships between the quantities m and n I. Let us 
note that when n I + m < i0 some degree of effective cooling is possible under the conditions 

n3K ~ < N 3 and m > n~. 

The noted trends in the change in 02 as a function of the parametric quantities are 
rather obvious: 82 diminishes with increasing m and K l and increases as n I, n 3, and K 3 in- 
crease. 
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We are particularly interested in investigating the influence exerted by the nature 
of the thermal link to the second OTC of the first and third objects on their temperature 
level. Figure 3 shows the theoretical relationships 01(KI) for three characteristic values 
of K3(0, I, ~) and 03(K 3) when K I = 0, I, ~ for the case of uniform links between the OTC 
and the ambient medium (n I = n 3 = i) and for the values of m = !0 at which the greatest pos- 
sibilities are achieved for distributing the temperature levels of all three OTC. Based 
on the data of the figure, we can draw the conclusion that when KI, K 3 < 1 a further reduc- 
tion in the magnitude of K i, all the way to zero, no longer exerts any effect on the tempera" 
ture level of the first OTC, but it is only the quantity K I that exerts some influence on 
the third OTC and, on the whole, the thermostatically controlled elements may be regarded 
as insulated from one another. With KI, K 3 + co, and at magnitudes of -103 , the temperature 
levels of the first and third 0TC asymptotically approach each other and all three OTC may 
be regarded as a single monolithic element. It should be noted that when KI, K 3 > 1 the 
temperature of the OTC depends weakly on the links to the preceding object (for the third 
OTC), whereas the temperature of the first 0TC depends markedly on the links to the subse- 
quent OTC. However, with K 3 < 1 the temperature of the third OTC has some relationship to 
K l, whereas 01 in the case of K I < 1 is independent of K s. 

3. Models with Distributed Parameters. Having analyzed the circuits shown in Fig. 
ib, c, we note that in both cases they are described by similar mathematical models and it 
is therefore useful to examine them in parallel. In this case, model 3 corresponds to the 
STC in which the excess of the thermally loaded sections of the heat exchanger are consider- 
ably smaller than the distances between them, and the change in conduit temperature in these 
sections is insignificant and need not be taken into consideration. 

The mathematical model of the STC includes (Fig. lb, c): 

!. A differential equation for the conduit with boundary conditions that make provi- 
sion for the fact that the temperature at the inlet to the conduit, as a rule, is known, 
or can be estimated, while the conduit itself is regarded as rather long: 

d20w b2 2 
- - + Q (;) = o, (8 )  

dOw i = O, O ~ , = T ~ - - T  a, O~=Tj - -Ta ,  O~1;=o=O~o, - ~ x  ,;=_1 

~n----- Orad/Ct, ~2ns=(Ycon/O t, Ora d = ~radUrad L, Ocon= CtconUins L, at ---- %F/L, 

x = x/L. 

The quantity Q(x), with uniformly_distributed inflows of heat to the heat exchanger from 
the OTC in the regions [xi, x i + ai], is given in the form 

N 
( P~L2 

- x i  a i =  a~ U (x - -  x~) = t O' x < xi ,  
x i =  L ' "--L-' [1, x ~ x i ,  

while in the case of local heat inflows: 

N Z P~L 
0 (g  = 6 (x--  

i=I 

where 6(x - xi) is the Dirac function. 

2. The differential equation which describes the distribution of temperature within 
the cryogenic flow, with boundary conditions of the first kind: 

dO__~S acon = 
d} ~ (@~-Of)=0' ~= ~, OsIT= 0 Os0. (9) 
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3. A system of two algebraic equations for cryostatically controlled elements, making 
it possible to associate the heat inflows Pi with the temperature distribution in the heat 
exchanger, which in the absence of intrinsic generation of heat in the OTC and a thermal 
link between the objects has the form 

P* = a i  (O, - -  Owl~_~_-<=~+~), P i  = - -  o'a*Oi, Of ---- T , -  T,., 

X :  X i 

whence 

~l'~ e ~  ~<y_~<~+~ ; ( 1 0 a )  P~ - ~ + ~a~ ~=~ 

O, = o', O~  =....-~<~+,~, . ( 1 0 b )  

Let us write the general solution of system (8), (9): 

3 

0 w (x) = X [Aj (Bj + D j) + Nj exp (V~)I, 
l = l  

(ii) 

where YI, Y2, and 7~ are the roots of a characteristic equation of the form 

+ ' bin) 7 - -  cPbi~ 0, 

A1 : 7~ - -  lh A~ ~--- "~3 - -  71 Aa = 71 - -  72 
A ' ' A  ' A ' 

A = 7~Y3 (73 -- 7~)- 7x73 (73 -- 70 + 7172 (?~ - -  '~1)" 

For the distributed inflows of heat 

N .,V 

i=1 t=~ ~,Faf 
AU -~- U (x - -  xf - -  a l )  - -  U (x - -  x0 ,  AF = F ,  - -  F 1, 

F~ = exp [TJ (x - -  x~ - -  a0]  U (x - -  xi  - -  a0 ,  F1 = F~ (a~ = 0), 

while for local heat inflows 

N 

B j = - - ( y . ~ + q ) )  ~.~.= P~L_EF F1, Dj=O, 

Nj are constants determined from the boundary conditions and Eqs. (8) and (9): 

3 

c17s exp (?s) -- c~71 exp (71) -- (?~ -- 7~) X Aj (Bi + O~) 7j 
i=l 

N3 = ~-3 ( ,2 ~ 72)2 71 exp (71) - -  (Y~ - -  7~) Y~ exp (73) + (72 - -  7~) ~'a exp (~a) ' 

- -  ~) c l + N 3 ( y ~ - - 7 1 )  
N1---- 72__7~ , N ~ - -  

2 I ~2 2 - - 7  2 

. . . .  - 2 ,  0 ,  ck = O i o b i n s - -  Owo ( b i n s +  k ---- I,  _ . . . . . . .  

Di  = Oj  (x  = 1). 

The comparatively cumbersome form of expression (ii) with consideration of the structure 
of the parameters in this expression makes itnecessary to undertake numerical calculations 
which involve iterations over formulas (ii) and (10a) as well as requiring the subsequent 
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calculations of @i in accordance with formula (lOb). These calculations are carried out 
on a computer with minimum expenditure of time and contain a minimum of initial information 
in compact form. The greatest advantages of this method become evident in the earliest stage 
of the design, in the selection of the SCC parameters through utilization of familiar optimiza- 
tion algorithms [8]. 

Significant simplification, making possible utilization of the derived theoretical rela- 
tionships for analytical estimates, can be achieved if we assume the flow of heat from the 
ambient medium to the heat exchanger to be constant [9], i.e., bin29w = const, which is what 
actually occurs with a high degree of accuracy in the majority of cases. In this case, it 
turns out that Y3 = 0 and 

~1,2  ~ - -  2 --+ +b2ins, 71>0, Y2<O. (12) 

For this case the derived solutions allow us to undertake simple analytical calculations 
of rather complex processes within the STC, and in particular we can determine the region 
of influence for the i-th source, i.e., the distance X from the point x i of heat power input 
Pi, over which distance, with a given error 6 i, the entire flow of heat from the source is 
transmitted to the coolant: 

~ - -  Pt(X) Pt(X) = %F dew(X)  
Pt~i) ' dX 

X = x - - x i ,  Pt(x~)=Pi- 

In view_of the as _ymmetry of the processes, these have to be examined individually for the 
region x < x i and x > xi; having carried out the appropriate operations, we can consequently 
obtain 

These formulas are convenient for purposes of estimating the distance X i over which the sources 
virtually exert no influence on each other (6 i ~ 0.i) or, conversely, over which these sources 
can be combined (6 i ~ 0.9). The ratio of the length of the zones of local heat-inflow influ- 
ence in the direction of the coolant flow relative to the opposite direction (assuming 6i + = 

6i-) is equal to 

where ~ characterizes the relative quantity of heat conducted to the coolant flowing past; 
denotes the relative conductivity of the conduit in the axial direction. When ~ ~ i, 

i.e., where the intensity of the convective exchange of heat is extensive over a large heat- 
release area in the case of limited flow rates and in the presence of considerable thermal 
conductivity on the part of the conduit material, we find Xi+/Xi - = i/~ + O, while in the 
case of ~ $ << 1 the length of these zones are equal. It is the latter case that is most 
frequently encountered in actual practice, and it corresponds to the condition b 2 >> ~2/4 
(when gaseous helium flows along a thin-walled copper conduit that is 5 mm in diameter and 
1 m in length, this condition is normally present with a reserve of two orders of magnitude). 

We used the proposed method as a basis for the calculation of a steady-state STC thermal 
regime in which three temperature levels are attained as a consequence of the local OTC ther- 
mal links to the heat exchanger; the difference in the results from a comparison of the OTC 
temperatures and the experimental data did not exceed 4%. 

This investigations demonstrated the convenience of analytical calculations in solving 
the problem of classifying STC on the basis of large and small thermal-link criteria, as 
well as in determining the parameters which exert decisive and secondary influence. In many 
practical cases, the elements of the calculation methods based on models with concentrated 
and distributed parameters serve to complement each other at various stages of the analysis, 
making it possible to refine the initially adopted thermal model, thus facilitating the in- 
vestigation into relatively complex STC circuits. 
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NOTATION 

Ti, temperature of the i-th OTC, K; P0i, power of the internal heat generation in the 
OTC, W; ~i, convective heat-transfer coefficient at the section in contact with the i-th 
OTC, W/(m2"K); S i, surface area of convective heat exchange at the segment in contact with 
the i-th OTC, m2; c, specific heat capacity of the coolant, J/(kg'K); M, mass flow rate of 
the coolant, kg/sec; Tw, temperature of the conduit wall, K; Tf, temperature of the coolant 
flow, K; ~rad, coefficient of radiative heat exchange between the conduit and the ambient 
medium, W/(m2"K); Ura d, outside perimeter of the conduit, m; L, length of the conduit, m; 
~con, coefficient of convective heat exchange in the heat exchanger, W/(m2"k); Uins, inside 
perimeter of the conduit, m; h, coefficient of thermal conductivity for the material of the 
conduit, W/(m.K); F, cross-sectional area of the conduit, m 2. 
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THE CONTROL OF QUASIUNIFORM HEATING OF A CYLINDRICAL SPECIMEN 

IN AN INDUCTOR 

A. Yu. Kuyanov, V. B. Glasko, and A. N. Tikhonov UDC 537.321 

We have used a computer mathematically to experiment with and to formulate solu- 
tions for the problem of optimum control by means of quasiuniform heating of 
Foucault currents in cylindrical steel specimens. 

The technology used in the heat treatment of metal specimens requires that they be heated 
^ 

uniformly, within the limits of some tolerance 6, to a specified temperature u. Such quasi- 
uniform heating, regardless of its source, can either be achieved within some given interval 
of time, or within a minimum period of time whose estimation is of interest from the stand- 
point of economic control of the technological processes. 

The problems of using quasiuniform heating to achieve control have been examined, in 
particular, in [I, 2], where the control functions where the temperature of the outside medium 
for the flow of heat coming from the outside was taken as a function of time. 

In this paper, the heating is achieved by means of Foucault currents that are generated 
within the specimen by means of a high-frequency field from a solenoid inductor into which 
the specimen has been placed. 

Within the framework of the axial-symmetric three-dimensional-uniform model in [3, 4] 
a method is applied to the problems of annealing steel specimens for purposes of calculating 
the temperature field generated by such a source. 
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